El Laboratorio de Mejoramiento Genético y Conservación ejecuta proyectos que conducen a la obtención de nuevas variedades con cualidades superiores, y a la conservación de la diversidad biológica. En estrecha relación con los proyectos mencionados, realiza estudios básicos de la resistencia/respuesta de las plantas a factores abióticos.
DrC. José C. Lorenzo Feijoo
DrC. Lourdes Yabor
DrC. Inaudis Cejas
MrS. Julia Martínez
MrS. Lázaro Hernández
MrS. Melissa Arguedas
MrS. Yanier Acosta
MrS. Rosmery Pereira
Conservación de los recursos fitogenéticos con énfasis en la criopreservación.
Tolerancia de la planta a factores abióticos tales como salinidad, sequía y alta temperatura.
Tolerancia de la planta a factores bióticos.
Métodos quimio-informáticos, matemáticos y estadísticos aplicados a la biotecnología vegetal.
Espinosa, P.; Lorenzo, J.C.; Iglesias, A.; Yabor, L.; Menéndez, E.; Borroto, Y.; Hernández, L.; Arencibia, A. Production of pineapple transgenic plants assisted by temporary immersion bioreactors. Plant Cell Rep. 21:136-140. 2002.
Yabor, L.; Arzola, M.; Aragón, C.; Hernández, M.; Arencibia, A.; Lorenzo, J.C. Biochemical side effects of genetic transformation of pineapple. Plant Cell Tiss. Org. Cult. 86: 63-67. 2006.
Yabor, L.; Espinosa, P.; Arencibia, A.; Lorenzo, J.C. Pineapple (Ananas comosus (L.) Merr.). In: Wang, K (ed.) Methods in Molecular Biology, Humana Press Inc., New Jersey, p. 219-226, 2006.
Yabor, L.; M.; Aragón, C.; Hernández, M.; Arencibia, A.; Lorenzo, J.C. Biochemical side effects of the herbicide FINALE® on bar gene-containing transgenic pineapple plantlets. Euphytica. DOI 10.1007/s10681-008-9743-0; 2008.
Yabor, L.; Valle, B.; Carvajal, C.; Aragón, C.; Hernández, M.; González, J.; Daquinta, M.; Arencibia, A.; Lorenzo, J.C. Characterization of a field-grown transgenic pineapple clone containing the genes chitinase, AP24, and bar. In Vitro Cell. Dev. Biol.—Plant. DOI 10.1007/s11627-009-9245-3; 2009.
Yabor, L.; Valle, B.; Rodríguez, R.C.; Aragón, C.; Papenbrock, J.; Tebbe, C.C.; Lorenzo, J.C. The third vegetative generation of a field-grown transgenic pineapple clone shows minor side effects of transformation on plant physiological parameters. Plant Cell Tiss. Org. Cult. DOI :10.1007/s11240-016-0950-4; 2016.
Yabor, L.; Rumlow, A.; Gómez, D.; Tebbe, C.C.; Papenbrock, J.; Lorenzo, J.C. Mineral composition of a transgenic pineapple clone grown in the field for eight years. In Vitro Cell. Dev. Biol.-Plant (accepted, 2017). DOI: 10.1007/s11627-017-9858-x.
Villalobos-Olivera, A.; Martínez, J.; Quintana, N.; Zevallos, B.E.; Cejas, I.; Lorenzo, J.C.; González-Olmedo, J.; Martínez-Montero, M.E. Field performance of micropropagated and cryopreserved shoot tips - derived pineapple plants grown in the field for 14 months. Acta Physiol. Plant (accepted); 2019.
Villalobos, A.; Arguedas, M.; Escalante, D.; Martínez, J.; Zevallos, B.E.; Cejas, I.; Yabor, L.; Martínez-Montero, M.E.; Sershen; Lorenzo, J.C. Cryopreservation of sorghum seeds modifies germination and seedling growth but not field performance of adult plants. J. Appl. Bot. Food Qual. (accepted); 2019.
Arguedas, M.; Gómez, D.; Hernández, L.; Engelmann, F.; Garramone, R.; Cejas, I.; Yabor, L.; Martínez-Montero, M.E.; Lorenzo, J.C. Maize seed cryo-storage modifies chlorophyll, carotenoid, protein, aldehyde and phenolics levels during early stages of germination. Acta Physiol. Plant. DOI: 10.1007/s11738-018-2695-7; 2018.
Acosta, Y.; Hernández, L.; Mazorra, C.; Quintana, N.; Zevallos, B.E.; Cejas, I.; Sershen, Lorenzo, J.C.; Martínez-Montero, M.E.; Fontes, D. Seed cryostorage enhances subsequent plant productivity in the forage species Teramnus labialis (L.F.) Spreng. Cryoletters (in press); 2018.
Arguedas, M.; Villalobos, A.; Gómez, D.; Hernández, L.; Zevallos, B.; Cejas, I.; Yabor, L.; Martínez-Montero, M.E.; Lorenzo, J.C. Field performance of cryopreserved seed-derived maize plants. CryoLetters (in press); 2018.
Cejas, I.; Rumlow, A.; Turcios, A.; Engelmann, F.; Martínez, M. E.; Yabor, L.; Papenbrock, J.; Lorenzo, J.C. Exposure of common bean seeds to liquid nitrogen modifies mineral composition of young plantlet leaves. Am. J. Plant Sci., 7: 1612-1617, http://dx.doi.org/10.4236/ajps.2016.712152; 2016.
Cejas, I.; Méndez, R.; Villalobos, A.; Palau, F.; Aragón, C.; Engelmann, F.; Carputo, D.; Aversano, R.; Martínez, M.E.; Lorenzo, J.C. Phenotypic and molecular characterization of Phaseolus vulgaris plants from non-cryopreserved and cryopreserved seeds. Am. J. Plant Sci. doi:10.4236/ajps.2013.44103; 4: 844-849; 2013
Cejas, I; Vives, K.; Laudat, T.; González-Olmedo, J.; Engelmann, F.; Martínez-Montero, M.E.; Lorenzo, J.C. Effects of cryopreservation of Phaseolus vulgaris L. seeds on early stages of germination. Plant Cell Rep. DOI: 10.1007/s00299-012-1317-x; 2012
Zevallos, B.; Cejas, I.; Engelmann, F.; Carputo, D.; Aversano, R.; Scarano, MT; Yanes, E.; Martínez-Montero, M.; Lorenzo, J.C. Phenotypic and molecular characterization of plants regenerated from non-cryopreserved and cryopreserved wild Solanum lycopersicum Mill. seeds. Cryoletters 35: 216-225; 2014
Zevallos, B.; Cejas, I.; Valle, B.; Yabor, L.; Aragón, C.; Engelmann, F.; Martínez, M.E.; Lorenzo, J.C. Short-term liquid nitrogen storage of wild tomato (Solanum lycopersicumMill.) seeds modifies the levels of phenolics in 7 day-old seedlings. Sci. Hort.; 10.1016/j.scienta.2013.06.002; 2013
Zevallos, B.; Cejas, I.; Rodríguez, R.C.; Yabor, L.; Aragón, C.; González, J.; Engelmann, F.; Martínez, M.E.; Lorenzo, J.C. Biochemical characterization of Ecuadorian wild Solanum lycopersicum Mill. plants produced from non-cryopreserved and cryopreserved seeds. CryoLetters; 34: 413-421; 2013
Arguedas, M.; Pérez, A.; Abdelnour, A.; Hernández, M.; Engelmann, F.; Martínez, M. E.; Yabor, L.; Lorenzo, J. C. Short-term liquid nitrogen storage of maize, common bean and soybean seeds modifies their biochemical composition. Agr. Sci., 4(3), 6-12. http://dx.doi.org/10.12735/as.v4n3p06; 2016
Martínez, M.E.; Mora, N.; Quiñones, J.; González-Arnao, MT; Engelmann, F.; Lorenzo, J.C. Effect of cryopreservation on the structural and functional integrity of cell membranes of sugarcane embryogenic calluses. Cryoletters. 23(4): 237-244. 2002
Martínez. M.; Ojeda, E.; Espinosa, A.; Sánchez, M.; Castillo, R.; González, M.T.; Engelmann, F.; Lorenzo, J.C. Field performance of sugarcane plants derived from cryopreserved calluses. Cryoletters. 23(1):21-26. 2002
Yanes, E.; Gil, K.; Rebolledo, L.; Rebolledo, A.; Uriza, D.; Martínez, O.; Isidrón, M.; Díaz, L.; Lorenzo, J.C.; Simpson, J. Genetic diversity of Cuban pineapple germplasm assessed by AFLP Markers. Crop Breed Appl Biotech. 12:104-110, 2012
Hernández, L.; Gómez, D.; Valle, B.; Tebbe, C.C.; Trethowan, R.; Acosta, R.; Yabor, L.; Lorenzo, J.C. Carotenoids in roots indicated the level of stress induced by mannitol and sodium azide treatment during the early stages of maize germination. Acta Physiol. Plant. DOI: 10.1007/s11738-018-2744-2; 2018
Hernández, L.; Loyola-González, O.; Valle, B.; Martínez, J.; Díaz-López, L.; Aragón, C.; Vicente, O.; Papenbrock, J.; Trethowan, R.; Yabor, L.; Lorenzo, J.C. Identification of discriminant factors after exposure of maize and common bean plantlets to abiotic stresses. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 43:589-598. DOI:10.15835/nbha4329916; 2015
Gómez, D.; Hernández, L.; Yabor, L.; Beemster, G.T.S.; Tebbe, C.C.; Papenbrock, J.; Lorenzo, J.C. Euclidean distance can identify the mannitol level that produces the most remarkable integral effect on sugarcane micropropagation in temporary immersion bioreactors. J. Plant Res DOI: 10.1007/s10265-018-1028-7; 2018
Gómez, D.; Hernández, L.; Valle, B.; Martínez, J.; Cid, M.; Escalona, M.; Hernández, M.; Yabor, L.; Beemster, G.T.S; Tebbe, C.C.; Papenbrock, J.; Lorenzo, J.C. Salinity induces specific metabolic changes in sugarcane shoot explants in temporary immersion bioreactors. J. Appl. Biol. Food Qual. 90, 354 - 358, DOI:10.5073/JABFQ.2017.090.044; 2017
Gómez, D.; Hernández, L.; Valle, B.; Martínez, J.; Cid, M.; Escalona, M.; Hernández, M.; Beemster, G.T.S.; Tebbe, C.C.; Yabor, L.; Lorenzo, J.C. Temporary immersion bioreactors (TIB) provide a versatile, cost-effective and reproducible in vitro analysis of the response of pineapple shoots to salinity and drought. Acta Physiol. Plant. DOI: 10.1007/s11738-017-2576-5; 2017
González-Rodríguez, R.; Serrato, R.; Molina, J.; Aragón, C.; Olalde, V.; Pulido, L.; Dibut, B.; Lorenzo, J.C. Biochemical and physiological changes produced by Azotobacter chroococcum (INIFAT5 strain) on pineapple in vitro-plantlets during acclimatization. Acta Physiol. Plant. DOI: 10.1007/s11738-013-1373-z; 2013
González, R.; Laudat, T.; Arzola, M.; Méndez R.; Marrero, P.; Pulido, L.; Dibut, B.; Lorenzo, J.C. Effect of Azotobacter chroococcum on in vitro pineapple plants’ growth during acclimatization. In Vitro Cell. Dev. Biol.-Plant. http://dx.doi.org/10.1007/s11627-010-9334-3. 2010
Companioni, B.; Mora, N.; Diaz, L.; Perez, A.; Arzola, M.; Espinosa, P.; Hernandez, M.; Ventura, J.; Perez, M.C.; Santos, R.; Lorenzo, J.C. Identification of discriminant factors after treatment of resistant and susceptible banana leaves with Fusarium oxysporum f. sp. cubense-culture filtrates. Plant Breed. 124: 79-85; 2005
Companioni, B.; Mora, N.; Arzola, M.; Ventura, J.; Perez, M.C.; Santos, R.; Lorenzo, J.C. Improved technique for rapid and non-destructive in vitro differentiation between resistant and susceptible banana clones of Fusarium oxysporum f. sp. cubense. Biotechnol. Lett. 26(3):213-216. 2004
Companioni, B.; Arzola, M.; Rodríguez, Y.; Mosqueda, M.; Pérez, M.C.; Borrás, O.; Lorenzo, J.C.; Santos, R. Use of culture-derived Fusarium oxysporum f. sp. cubense, race 1 filtrates for rapid and non-destructive in vitro differentiation between resistant and susceptible clones of field-grown banana. Euphytica. 130(3):341-347. 2003
Rodríguez, Y.; Mosqueda, M.; Companioni, B.; Arzola, M.; Borrás, O.; Pérez, M.C.; Lorenzo, J.C.; Santos, R. Bioassay for in vitro differentiation of pineapple cultivar resistance levels to heart rot disease. In Vitro Cell. Dev. Biol.-Plant. 38(6): 613-616. 2002
Lorenzo, J.C.; González, B.; Escalona, M.; Teisson, C.; Espinosa, P.; Borroto, C. Sugarcane shoot formation in an improved temporary immersion system. Plant Cell Tiss. Org. Cult. 54(3):197-200; 1998
Lorenzo, J.C.; Blanco, M.A.; Peláez, O.; González, A.; Cid, M.; Iglesias, A.; González, B.; Escalona, M.; Espinosa, P.; Borroto, C. Sugarcane micropropagation and phenolic excretion. Plant Cell Tiss. Org. Cult. 65:1-8; 2001
Lorenzo, J.C.; Ojeda, E.; Espinosa, A.; Borroto, C. Field performance of temporary immersion bioreactor-derived sugarcane plants. In Vitro Cell Dev. Biol.-Plant. 37; 2001
Gómez, D.; Hernandez, L.; Martínez, J.; Quiñones, J.; Zevallos, B.; Sershen, N.; Yabor, L.; Lorenzo, J.C. Mutagenic effects of sodium azide on pineapple micropropagant growth and biochemical profile within temporary immersion bioreactors. J. Appl. Bot. Food Qual. (in press); 2018
Borroto, C.; Escalona, M.; Lorenzo, J.C. Micropropagation for large scale agricultural use. Challenge overview and a case study: temporary immersion bioreactor system. In Vitro Cell. Dev. Biol.-Plant. 35(3):19-A; 1999
Escalona, M.; Lorenzo, J.C.; González, B.; Daquinta, M.; Borroto, C.; González, J.L.; Desjardines, Y. Pineapple micropropagation in temporary immersion systems. Plant Cell Rep. 18(9): 743-748; 1999
Vives, K.; Andújar, I.; Lorenzo, J.C.; Concepción, O.; Hernández, M.; Escalona, M. Comparison of different in vitro micropropagation methods of Stevia rebaudiana B. including temporary immersion bioreactor (BIT®). Plant Cell Tiss. Org. Cult., DOI: 10.1007/s11240-017-1258-8; 2017
Etienne, E.; C. Teisson, D. Alvard, M. Lartaud, M. Berthouly, F. Georget, M. Escalona, J. C. Lorenzo. Temporary immersion for plant issue culture. In: Arie Altman, Meira Ziv, Shamay Izhar (eds). Plant Biotechnology and In Vitro Biology in the 21st Century: Current Plant Science and Biotechnology in Agriculture. Vol. 36, 1999, pp. 629-632
Perez, A.; Napoles, L.; Carvajal, C.; Hernandez, M.; Lorenzo, J.C. Effect of sucrose, inorganic salts, inositol and thiamine on protease excretion during pineapple culture in temporary immersion bioreactors. In Vitro Cell. Dev. Biol.-Plant. 40(3); 2004
Pérez, A.; Nápoles, L.; Lorenzo, J.C.; Hernández, M. Protease excretion during pineapple micropropagation in temporary immersion bioreactors. In Vitro Cell. Dev. Biol.-Plant. 39:311-315. 2003
Pérez, A.; Laudat, T.; Mora, M.; Carvajal, C.; Aragón, C.; González, J.; Escalona, M.; Daquinta, M.; Trujillo, R.; Hernández, M.; Lorenzo, J.C. Micropropagation of Hohenbergia penduliflora (A. Rich.) Mez. for sustainable production of plant proteases. Acta Physiol. Plant. DOI: 10.1007/s11738-013-1288-8; 2013
Pérez, A.; Carvajal, C.; Trejo, S.; Torres, M.J.; Martin, M.I.; Lorenzo, J.C.; Natalucci, C.; Hernández, M. Penduliflorain I: A Cysteine Protease Isolated from Hohenbergia penduliflora (A.Rich.) Mez (Bromeliaceae). Protein J. 29:225–233; DOI 10.1007/s10930-010-9243-7; 2010
Nieves, N.; Lorenzo, J.C.; Blanco, M.; González, J.; Peralta, H.; Hernández, M.; Santos, R.; Concepción, O.; Borroto, E.; Borroto, C.; Tapia, R.; Martínez, M.; Fundora, Z. Artificial endosperm for zygotic embryos of Cleopatra tangerine (Citrus reshni Hort ex Tan). A model for somatic embryo encapsulation. Plant Cell Tiss. Org. Cult. 54 (2): 77-83; 1998
Nieves, N.; Martínez, M.E.; Blanco, M.A.; González, J.; Borroto, E.; Lorenzo, J.C.; Portilla, Y. Changes in soluble proteins and polyamines during citrus seed germination. Fruits; 53:27-33; 1998
Pérez, G.; Yanez, E.; Mbogholi, A.; Valle, B.; Sagarra, F.; Yabor, L.; Aragón, C.; González, J.; Isidrón, M.; Lorenzo, J.C. New pineapple somaclonal variants: P3R5 and Dwarf. Am. J. Plant Sci. doi:10.4236/ajps.2012.31001; 3: 1-11; 2012
Pérez, G.; Mbogholi; A.; Sagarra, F.; Aragón, C.; González, J.; Isidrón, M.; Lorenzo, J.C. Morphological and physiological characterization of two new pineapple somaclones derived from in vitro culture. In Vitro Cell.Dev.Biol.—Plant. DOI 10.1007/s11627-011-9342-y; 2011
Pérez, G.; Yanez, E.; Isidrón, M.; Lorenzo, J.C. Phenotypic and AFLP characterization of two new pineapple somaclones derived from in vitro culture. Plant Cell Tiss. Org. Cult. DOI 10.1007/s11240-008-9463-0; 96:113-116; 2009
Gomez-Pando, L.; Jimenez–Davalos, J.; Eguiluz-de la Barra, A.; Aguilar-Castellanos, E.; Falconí-Palomino, J.; Ibañez-Tremolada, M.; Varela, M.; Lorenzo, J.C. Field performance of new in vitro androgenesis-derived double haploids of barley. Euphytica. 166: 269–276; 2009
Gomez-Pando, L.; Jimenez–Davalos, J.; Eguiluz-de la Barra, A.; Aguilar-Castellanos, E.; Falconí-Palomino, J.; Ibañez-Tremolada, M.; Aspiolea, M.E.; Lorenzo, J.C. Estimated economic benefit of double-haploid technique for Peruvian barley growers and breeders. Cereal Res. Comm. 37: 287–293; 2009
Lorenzo, J.C.; García-Borroto, M. Use of regression analysis in plant cell, tissue, and organ culture experiments. In Vitro Cell. Dev. Biol.-Plant. DOI: 10.1007/s11627-007-9100-3, 44: 229–232; 2008
Lorenzo, J.C.; García, M. Reply to RE: Use of regression analysis in plant cell, tissue and organ culture experiments (44(3): 229–232). In Vitro Cell. Dev. Biol.-Plant. DOI 10.1007/s11627-009-9206-x; 2009
Lorenzo, J.C.; Varela, M.; Hernández, M.; Gutiérrez, A.; Pérez, A.; Loyola, O. Integrated criteria to identify the best treatment in plant biotechnology experiments. Acta Physiol. Plant. DOI: 10.1007/s11738-013-1352-4; 2013
Lorenzo, J.C.; Yabor, L.; Medina, N.; Quintana, N.; Wells, V. Coefficient of variation can identify the most important effects of experimental treatments. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. DOI:10.15835/nbha4319881. 43; 2015
Gomez-Pando, L. R.; Aldaba, G.; Ibañez, M.; Argumedo, K.; Lorenzo, J. C. Selection of new barley advanced lines considering several agricultural traits simultaneously: Comparison of two mathematical procedures. Agri. Sci., 4(3), 1-5. http://dx.doi.org/10.12735/as.v4n3p01; 2016
Andujar, I.; Gómez, D.; Pérez, L.; Vicente, O.; Lorenzo, J.C. Auxins, auxin transport inhibitors, and competitors for auxin receptors do not show statistically significant differences in 212 molecular descriptors. Rom. Biotechnol. Lett. (in press); 2018
Andújar, I.; Gómez, D.; Pérez, L.; Lorenzo, J.C. Use of chemo-informatics to identify molecular descriptors of auxins, cytokinins and gibberellins. J Appl Bioinforma Comput Biol 7:2.; DOI: doi: 10.4172/2329-9533.1000151; 2018
Andújar I, Gómez D, Pérez L, Lorenzo JC. Chemo- Informatic Comparison of Gibberellins and Anti-Gibberellins. J Pharm Drug Res, 2(1): 54-63; 2019
Andújar, I.; Gómez, D.; Pérez, L.; Sershen; Lorenzo, J.C. Terminal secondary C(sp3), aliphatic secondary C(sp2), aliphatic tertiary C(sp2), primary amine (aliphatic), ring secondary C(sp3) and imidazole numbers can be used to discriminate between cytokinins and cytokinin antagonists. Plant Cell Tiss. Org. Cult (accepted); 2019